DUN						
KUII NO						
11011 1 100						

Total No. of Questions: 09

Total No. of Pages: 02

B.Tech.(CE)(Sem.6) FOUNDATION ENGINEERING Subject Code: BTCE-603 Paper ID: A2290

Time: 03 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. Section A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. Section B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- **3.** Section C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

- **1.** Write briefly:
 - a) Differentiate between representative and non representative sample.
 - b) What factors influence the bearing capacity of a footing on cohesion less soil?
 - c) Define skempton's pore pressure parameters.
 - d) Differentiate between active and passive earth pressure.
 - e) What are the major criterions for design of foundations?
 - f) Differentiate between safe bearing capacity and safe allowable bearing pressure.
 - g) Differentiate between uniform and differential settlement.
 - h) Distinguish between seepage and discharge velocities through soil.
 - i) What are the various forces acting on a well foundation?
 - j) If w= 40%, G=2.71. Calculate V_{sat} , V_{dry} in kN/m³ where "w" is water content percentage and "G" is the specific gravity.

SECTION B

- **2.** What do you understand by the term tilt and shift in well foundation? Illustrate with the help of diagrams.
- 3. A rectangular foundation $2m \times 3m$ transmits a pressure of 360 kN/m^2 to the underlying soil. Determine the vertical stress at a point 1 meter vertically below a point lying outside the loaded area, 1 meter away from a short edge and 0.5 meter away from a long edge.

www.a2zpapers.com www.a2zpapers.com

Download free old Question papers gndu, ptu hp board, punjab board

- 4. Discuss the tri-axial shear strength test in detail. Also enumerate advantages of this test.
- 5. Explain in detail the various factors that help to decide the depth and number of bore holes required for sub soil exploration.
- 6. A cohesive soil has a unit weight 19.2 kN/m³, unit cohesion= 12 kN/m^2 and $\Phi = 10^\circ$. Calculate the critical depth of vertical excavation that can be made without any lateral support.

SECTION C

- 7. Write short notes on the following
 - a) Comparison of SPT and DCPT
 - b) Electrical resistivity method
 - c) Floating foundation.
- 8. The results of 2 drained tri-axial tests on saturated clay are given as Specimen $1 = \sigma_3 = 69 \text{ kN/m}^2$, $\sigma_d = 213 \text{ kN/m}^2$ Specimen $2 = \sigma_3 = 120 \text{ kN/m}^2$, $\sigma_d = 258.7 \text{ kN/m}^2$ Calculate shear strength parameters of the soil.
- 9. In a 16 pile group the pile dia is 0.4 m and the c/c spacing of piles in the square group is 1.5 m. If $C_u = 50 \text{ kN/m}^2$ determine whether the failure would occur as a block failure or will the piles act individually. Neglect bearing at tip of piles. All piles are 12 m long. Take $\alpha = 0.7$ for shear mobilization around each pile. Also determine the safe load on the group.